11965 measured reflections

 $R_{\rm int} = 0.079$

2630 independent reflections

1372 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-(4-Nitrobenzyloxy)quinoline

Min Min Zhao, Yong Hua Li* and Yuan Zhang

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: liyhnju@hotmail.com

Received 23 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.152; data-to-parameter ratio = 13.8.

In the molecule of the title compound, $C_{16}H_{12}N_2O_3$, the nitrobenzene benzene ring forms a dihedral angle of 23.8 (8)° with the plane of the quinoline ring system. The crystal structure is stabilized by an aromatic π - π stacking interaction between centrosymmetrically related benzene rings [centroidcentroid distance 3.663 (2) Å].

Related literature

For related structures, see: Fu & Zhao (2007); Li & Chen (2008); Zhao (2008); Zhao et al. (2009).

Experimental

Crystal data

-	
$C_{16}H_{12}N_2O_3$	V = 1344.3 (6) Å ³
$M_r = 280.28$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.296 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 8.9146 (18) Å	T = 293 K
c = 13.559 (3) Å	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$\beta = 115.25 \ (3)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.976, T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ 190 parameters $wR(F^2) = 0.152$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^-$ S = 1.02 $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ 2630 reflections

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

This work was supported by a start-up grant (4007041028) and a Science and Technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2340).

References

Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, 03206. Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Zhao, Y.-Y. (2008). Acta Cryst. E64, 0761. Zhao, M. M., Li, Y. H., Wu, D. H. & Wan, Q. (2009). Acta Cryst. E65, o1261. supplementary materials

Acta Cryst. (2009). E65, o1795 [doi:10.1107/S1600536809025823]

6-(4-Nitrobenzyloxy)quinoline

M. M. Zhao, Y. H. Li and Y. Zhang

Comment

Recently, we have reported the synthesis and crystal structure of some benzonitrile compounds (Fu & Zhao, 2007; Li & Chen, 2008; Zhao, 2008; Zhao *et al.*, 2009). As an extension of our work on the structural characterization of benzonitrile derivatives, we present herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), bond lengths and angles are within normal ranges. The C11–C16 benzene ring forms a dihedral angle of 23.8 (8)° with the plane of the quinoline ring system. No intra- or intermolecular hydrogen bonds are observed. The crystal structure is stabilized by an aromatic π - π stacking interaction involving centrosymmetrically related benzene rings at (x, y, z) and (1-x, -y, 1-z), with a centroid-centroid distance of 3.663 (2) Å.

Experimental

Quinolin-6-ol (1 g,0.0069 mol) was added to a solution of sodium hydroxide (0.276 g, 0.0069 mol) in methanol (15 ml) and stirred for one hour. Then 4-(bromomethyl)benzonitrile (1.49 g, 0.0069 mol) was added and the mixture stirred at room temperature for 1 day. The title compound was isolated by column chromatography using petroleum ether/ethyl acetate (1:1 v/v) as eluent. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/tetrahydrofuran (3:1 v/v) solution.

Refinement

All H atoms were calculated geometrically allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (C).

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

6-(4-Nitrobenzyloxy)quinoline

Crystal data	
$C_{16}H_{12}N_2O_3$	
$M_r = 280.28$	
Monoclinic, $P2_1/n$	

 $F_{000} = 584$ $D_x = 1.385 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

supplementary materials

Hall symbol: -P 2yn a = 12.296 (3) Å b = 8.9146 (18) Å c = 13.559 (3) Å $\beta = 115.25$ (3)° V = 1344.3 (6) Å³ Z = 4

Data collection

Cell parameters from 8689 reflections	
$\theta = 3.0-27.8^{\circ}$	
$\mu = 0.10 \text{ mm}^{-1}$	
<i>T</i> = 293 K	
Block, colourless	
$0.20 \times 0.18 \times 0.15 \text{ mm}$	

Rigaku SCXmini diffractometer	2630 independent reflections
Radiation source: fine-focus sealed tube	1372 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
T = 293 K	$\theta_{\min} = 3.3^{\circ}$
CCD profile fitting scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.976, \ T_{\max} = 0.981$	$l = -16 \rightarrow 16$
11965 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.152$	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.1856P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2630 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3786 (4)	0.3414 (4)	-0.1994 (3)	0.0901 (11)
H1A	0.3497	0.3839	-0.2686	0.108*
C2	0.4967 (4)	0.3728 (4)	-0.1275 (3)	0.0881 (11)
H2A	0.5444	0.4336	-0.1487	0.106*
C3	0.5411 (3)	0.3132 (4)	-0.0257 (3)	0.0735 (9)
НЗА	0.6202	0.3321	0.0235	0.088*
C4	0.4671 (3)	0.2230 (3)	0.0046 (2)	0.0542 (7)
C5	0.5069 (2)	0.1580 (3)	0.1090 (2)	0.0557 (7)
H5A	0.5847	0.1750	0.1616	0.067*
C6	0.4303 (3)	0.0705 (3)	0.1319 (2)	0.0555 (8)
C7	0.3126 (3)	0.0454 (3)	0.0539 (2)	0.0657 (8)
H7A	0.2613	-0.0147	0.0711	0.079*
C8	0.2730 (3)	0.1074 (3)	-0.0460 (2)	0.0650 (8)
H8A	0.1943	0.0902	-0.0967	0.078*
C9	0.3483 (3)	0.1972 (3)	-0.0747 (2)	0.0572 (8)
C10	0.5763 (2)	0.0164 (3)	0.3124 (2)	0.0597 (8)
H10A	0.5943	0.1212	0.3318	0.072*
H10B	0.6332	-0.0211	0.2861	0.072*
C11	0.5866 (2)	-0.0718 (3)	0.4102 (2)	0.0502 (7)
C12	0.6722 (3)	-0.0323 (3)	0.5119 (2)	0.0620 (8)
H12A	0.7211	0.0504	0.5189	0.074*
C13	0.6870 (3)	-0.1124 (3)	0.6032 (2)	0.0605 (8)
H13A	0.7456	-0.0855	0.6715	0.073*
C14	0.6139 (2)	-0.2321 (3)	0.5916 (2)	0.0504 (7)
C15	0.5270 (3)	-0.2749 (3)	0.4919 (2)	0.0607 (8)
H15A	0.4777	-0.3568	0.4859	0.073*
C16	0.5142 (3)	-0.1945 (3)	0.4008 (2)	0.0627 (8)
H16A	0.4565	-0.2231	0.3325	0.075*
N1	0.3048 (2)	0.2567 (3)	-0.1773 (2)	0.0782 (8)
N2	0.6285 (3)	-0.3179 (3)	0.6883 (2)	0.0655 (7)
01	0.45682 (16)	0.0016 (2)	0.22964 (15)	0.0699 (6)
O2	0.7111 (2)	-0.2867 (3)	0.77502 (18)	0.0885 (8)
O3	0.5578 (2)	-0.4184 (3)	0.67829 (19)	0.1026 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.105 (3)	0.111 (3)	0.062 (2)	0.029 (3)	0.043 (2)	0.032 (2)
C2	0.096 (3)	0.101 (3)	0.080 (3)	0.005 (2)	0.050(2)	0.028 (2)
C3	0.074 (2)	0.083 (2)	0.070 (2)	0.0011 (18)	0.0365 (18)	0.0121 (19)
C4	0.0594 (18)	0.0558 (17)	0.0529 (17)	0.0062 (14)	0.0293 (15)	0.0049 (15)
C5	0.0499 (17)	0.0636 (19)	0.0504 (17)	0.0014 (14)	0.0182 (14)	0.0028 (15)
C6	0.0569 (18)	0.0606 (19)	0.0488 (17)	0.0038 (15)	0.0224 (15)	0.0096 (15)
C7	0.0593 (19)	0.075 (2)	0.061 (2)	-0.0085 (16)	0.0246 (17)	0.0075 (17)

supplementary materials

C8	0.0535 (18)	0.078 (2)	0.0564 (19)	-0.0016 (16)	0.0167 (16)	-0.0063 (17)
C9	0.0624 (19)	0.064 (2)	0.0458 (17)	0.0152 (16)	0.0241 (15)	0.0030 (15)
C10	0.0556 (18)	0.0685 (19)	0.0551 (17)	-0.0006 (15)	0.0235 (15)	0.0073 (16)
C11	0.0513 (16)	0.0530 (17)	0.0498 (17)	0.0060 (14)	0.0249 (14)	0.0037 (14)
C12	0.065 (2)	0.0585 (19)	0.0581 (19)	-0.0059 (15)	0.0220 (16)	-0.0016 (16)
C13	0.0649 (19)	0.063 (2)	0.0443 (17)	0.0002 (16)	0.0144 (15)	-0.0018 (15)
C14	0.0552 (17)	0.0486 (17)	0.0475 (17)	0.0149 (14)	0.0219 (14)	0.0077 (14)
C15	0.0610 (18)	0.0558 (18)	0.0592 (19)	-0.0042 (14)	0.0196 (16)	0.0100 (16)
C16	0.0626 (19)	0.064 (2)	0.0515 (17)	-0.0022 (16)	0.0150 (15)	0.0042 (16)
N1	0.081 (2)	0.097 (2)	0.0538 (16)	0.0222 (16)	0.0264 (15)	0.0179 (15)
N2	0.0721 (18)	0.0630 (18)	0.0608 (18)	0.0157 (15)	0.0278 (15)	0.0106 (15)
01	0.0584 (13)	0.0896 (15)	0.0573 (13)	-0.0055 (11)	0.0204 (11)	0.0238 (11)
O2	0.0970 (18)	0.0955 (18)	0.0544 (13)	0.0180 (14)	0.0145 (13)	0.0151 (13)
03	0.114 (2)	0.106 (2)	0.0789 (17)	-0.0218 (17)	0.0334 (15)	0.0297 (15)

Geometric parameters (Å, °)

C1—N1	1.310 (4)	C10—O1	1.425 (3)
C1—C2	1.389 (4)	C10-C11	1.500 (3)
C1—H1A	0.9300	C10—H10A	0.9700
C2—C3	1.358 (4)	C10—H10B	0.9700
C2—H2A	0.9300	C11—C12	1.377 (4)
C3—C4	1.402 (4)	C11—C16	1.382 (4)
С3—НЗА	0.9300	C12—C13	1.373 (4)
C4—C5	1.410 (4)	C12—H12A	0.9300
C4—C9	1.415 (4)	C13—C14	1.360 (4)
C5—C6	1.357 (4)	C13—H13A	0.9300
С5—Н5А	0.9300	C14—C15	1.372 (4)
C6—O1	1.368 (3)	C14—N2	1.461 (3)
С6—С7	1.399 (4)	C15—C16	1.378 (4)
С7—С8	1.346 (4)	C15—H15A	0.9300
С7—Н7А	0.9300	C16—H16A	0.9300
С8—С9	1.399 (4)	N2—O2	1.214 (3)
C8—H8A	0.9300	N2—O3	1.215 (3)
C9—N1	1.367 (3)		
N1—C1—C2	125.1 (3)	O1C10H10A	110.0
N1—C1—H1A	117.5	C11-C10-H10A	110.0
C2—C1—H1A	117.5	O1-C10-H10B	110.0
C3—C2—C1	118.8 (3)	C11-C10-H10B	110.0
С3—С2—Н2А	120.6	H10A—C10—H10B	108.4
C1—C2—H2A	120.6	C12-C11-C16	118.8 (3)
C2—C3—C4	119.5 (3)	C12-C11-C10	119.4 (3)
С2—С3—Н3А	120.2	C16-C11-C10	121.7 (3)
С4—С3—Н3А	120.2	C13—C12—C11	121.4 (3)
C3—C4—C5	122.6 (3)	C13—C12—H12A	119.3
C3—C4—C9	117.4 (3)	C11—C12—H12A	119.3
С5—С4—С9	120.0 (3)	C14—C13—C12	118.5 (3)
C6—C5—C4	119.2 (3)	C14—C13—H13A	120.8
С6—С5—Н5А	120.4	C12—C13—H13A	120.8

С4—С5—Н5А	120.4	C13—C14—C15	122.1 (3)
C5—C6—O1	125.3 (3)	C13—C14—N2	119.0 (3)
C5—C6—C7	120.9 (3)	C15—C14—N2	119.0 (3)
O1—C6—C7	113.8 (3)	C14—C15—C16	118.8 (3)
C8—C7—C6	120.6 (3)	C14—C15—H15A	120.6
С8—С7—Н7А	119.7	C16-C15-H15A	120.6
С6—С7—Н7А	119.7	C15—C16—C11	120.4 (3)
С7—С8—С9	121.1 (3)	C15—C16—H16A	119.8
С7—С8—Н8А	119.5	C11—C16—H16A	119.8
С9—С8—Н8А	119.5	C1—N1—C9	116.6 (3)
N1—C9—C8	119.2 (3)	O2—N2—O3	122.7 (3)
N1—C9—C4	122.6 (3)	O2—N2—C14	118.8 (3)
C8—C9—C4	118.2 (3)	O3—N2—C14	118.5 (3)
O1—C10—C11	108.5 (2)	C6—O1—C10	117.5 (2)

